第350章 帝国的黄昏(下)(4 / 4)
跃迁数t:乔代数中,跃迁数代表从一个维度到另一个维度的跳跃,用于描述不同维度间的相互作用和连接。
流形因子:乔空间中用来衡量和调控形态复杂度的参数,影响着空间的形态和扩展。
将这四个基本概念写完之后,许昌树转过身,看向讲台下一脸懵逼的孩子们。
“你们中有人觉得我们目前课程进度太慢了,完全是浪费时间,所以想要接触些新的东西,所以我决定满足你们。今天我们提前接触一下乔代数几何中的内容。板书上这四个最基本的特殊数,就是乔代数最基础的概念。
下午的两堂课这样安排,第一堂课我会先讲解几个例题,让你们尝试理解这些概念,以及它们的数学属性和应用。第二堂课我会布置两道乔代数中针对这四个概念最简单的题目,你们有一堂课的时间来解答。
如果你们能顺利完成,我会重新修改教案,让你们提前接触新的内容。当然,如果没人能答得出来,那我建议你们还是老老实实的按照我的既定教案来。有问题吗?”
“没问题!”十个人声音洪亮气氛昂扬的回答道。
之所以十二个人的课堂上,只有十个人回答,主要是有两个人根本不敢吱声……
是的,此时的顾正梁跟张舟都已经被震撼到了。
就正常进度都特么已经很难了,每天作业要写到大半夜,还玩跳跃?这特么谁啊!这个班能不能多两个正常人?
可惜,这两个人的反应被许昌树完全无视了。
这位资深的燕北教授,曾经也是小学六年级就已经掌握了微积分的天才微微一笑,然后开始写起了例题。
假设在一个多维超螺旋空间中,存在一点p在虚界数ξ的作用下通过旋元素w进行了一个基本的旋转变换。现在考虑使用跃迁数t将点p从其原始位置跃迁到新位置 q。
已知流形因子表示从p到q的空间曲率和拓扑变化。
1、给定 p的初始坐标为(x,y,z),ξ作用于 p后的坐标变为(y,x,z)。应用w=eio(其中o为给定的旋转角度),求出p的新坐标。
2、如果t是一个描述由p到q的跃迁映射,且表示这种变换下的空间变化率,请描述在的影响下,t如何改变 p到q的路径。
台下前所未有的安静,写完例题后,许昌树转身,看向这些专注的孩子,笑了笑,然后开始讲解:“首先,让我们看第一个问题,这是一道简单的计算题,但要求解,首先我们要理解题干的表述。
参考我刚才写的基本概念,p在ξ的作用下通过w进行一个基本旋转变换,大家首先想到了什么?”
台下很安静,片刻后有人说道:“旋转矩阵?”
“对,旋转矩阵,但并不全对,因为你只考虑了旋转,没有考虑到维度的变化,因为ξ本身还代表着高维的转换,所以你们要这样理解……”
↑返回顶部↑